1、混凝土生产中的隐患分析和预防
从混凝土生产的角度看,应该从原材料、配合比设计、生产控制、运输交付等方面对其质量加以控制,确保混凝土质量完全达到设计要求。
1.1 原材料
(1)隐患分析
混凝土工程质量的好坏直接影响整个钢筋混凝土结构的整体质量,而混凝土原材料的好坏和选配是否恰当也直接影响混凝土工程的质量。因此,确保钢筋混凝土结构质量一个重要的因素是要从混凝土原材料的质量控制做起。原材料选用不当将导致混凝土工程产生质量缺陷或裂缝,直接影响整个工程结构的质量。
混凝土因材料选用不当产生质量缺陷或裂缝,一般认为是因为混凝土材料(包括水泥石和粗细骨料)变形受约束所引起的内应力大于材料抗拉强度的缘故。材料选配不当的常见因素有水泥过期或品种选用不当;混凝土配合比不良;水泥、骨料含有过量有害物质;水泥水化热过高;外加剂使用不当等。其中骨料中含过量杂质最为普遍。骨料(砂、石)占混凝土总体积70%以上,混凝土质量除与水泥品质有关外,也与骨料中杂质含量有密切关系。
(2)预防措施
首先粗细骨料在使用前应进行杂质检验,从料堆取样部分应均匀分布,抽大致相等的8~15份组成样品。检测方法和依据根据混凝土用碎石或卵石、砂的质量检验规定。其次要控制好二次污染问题,应避免骨料堆场受油污、泥浆水等污染,严禁在曾堆放过生石灰的场地上堆放砂石等骨料。
混凝土的强度主要由水泥浆强度、水泥浆与骨料界面的黏结强度、骨料颗粒强度决定。水泥浆将骨料牢固地黏结成整体,而水泥浆的强度取决于水泥的强度等级,对水泥的质量控制除了按相关国家、行业标准、规范等控制,还须注意5大类水泥各自的特点,决定了其适用环境。针对不同的工程情况、气候情况,选择合适的水泥品种是获取优质混凝土的一个前提。
混凝土除了强度达到要求外还需要适宜的和易性。现代混凝土的和易性很大程度在高效外加剂作用下反映出来,实质上是水泥与高效外加剂的相容性问题,两者相容性好则可获得低用水量、大流动性且经时损失小的效果。影响外加剂与水泥相容性主要因素是水泥中C3A等矿物组成的含量及形态等因素。因而水泥品种不同,将影响减水剂的减水、增强效果,其中对减水效果影响更明显。高效减水剂对水泥更有选择性,不同水泥其减水率的相差较大,水泥矿物组成、掺和料、调凝剂、碱含量、细度等都将影响减水剂的使用效果,如掺有硬石膏的水泥,对于某些掺减水剂的混凝土将产生速硬或使混凝土初凝时间大大缩短,其中萘系减水剂影响较小,糖蜜类会引起速硬,木钙类会使初凝时间延长。因此,同一种减水剂在相同的掺量下,往往因水泥不同而使用效果明显不同,或同一种减水剂,在不同水泥中为了达到相同的减水增强效果,减水剂的掺量明显不同。在某些水泥中,有的减水剂会引起异常凝结现象。为此,当水泥可供选择时,应选用对减水剂较为适应的水泥,提高减水剂的使用效果。当减水剂可供选择时,应选择施工用水泥较为适用的减水剂,为使减水剂发挥更好效果,在使用前,应结合工程进行水泥选择试验。每种外加剂都有适宜的掺量,即使同一种外加剂,不同的用途有不同的掺量。掺量过大,不仅在经济上不合理,而且可能造成质量事故。
1.2 配合比设计
(1)隐患分析
混凝土配合比是进行生产的依据,直接关系到混凝土的性能和生产成本,是混凝土质量控制的核心部分。混凝土的配合比设计,应根据结构设计的强度等级、混凝土的耐久性及工程的结构部位、运输距离、施工方式等来确定原材料的品种、规格及拌合物的坍落度等性能。混凝土配合比设计一般依据《普通混凝土设计规范》GB/T55中所阐述的鲍罗米公式进行,以及国家标准《混凝土结构工程施工质量验收规范》GB50204,并结合试配确定最佳配合比。而现代混凝土的设计已在追求耐久性的设计,最经济的优化。同一条配合比在相同强度等级、不同的浇筑部位和施工方法并不完全适用,甚至出现严重的后果。如一般的泵送混凝土配合比,其为了可泵性一般都为富浆混凝土,但若此配合比用在桩基、立柱或路面等部位时,因浆量较多,容易在混凝土表面形成浮浆层,影响浇筑物质量。
(2)预防措施
混凝土配合比的设计要从浇筑物和施工方法两方面需求出发,按最大级配密实度来设计,在满足施工条件的情况下尽量减少砂浆量,在混凝土黏性不足以影响施工的情况下,尽量减少用水量,用减水剂调节混凝土流动性,这样既可减少浮浆层,又可减少混凝土塑性收缩,这就需要通过大量的试配来验证。而配合比在生产应用中亦要根据原材料的变化、天气情况、施工情况等进行适当调整。
1.3 混凝土生产中计量误差
(1)隐患分析
生产计量的误差可分为系统误差(显性误差)和非系统误差(隐性误差)。系统误差是由生产控制软件和传感器的精密度和灵敏度所造成。一般来讲,系统误差可通过配制合适的传感器并调节控制软件的参数来使误差小于规定的范围。而非系统误差主要是在原材料称量过程中,传感器外界影响而反馈信息存在一定的偏差,其体现为,在称量过程中由于机械的振动传输,使得称量器产生抖动,影响传感器的信息正确反馈:同时在粉料称量时,一般存在一定的气压(如用以破拱或风槽输送等),当气体在称料过程中积聚在称内,无形中对传感器产生一种压力,当传感器反馈信息给控制器后,气体散去,气压减少,实际称料则偏少;而当原材料投入搅拌机时,也会出现同样情况,气压通过下料管对称量器产生一种上顶的压力,使接着称量的物料出现比计算机读取值偏大。这些影响因素在生产过程中往往不容易被发现,隐性较大。
(2)预防措施
要克服这种隐患必须对生产称量系统保持时刻关注,牢固各种物料称的支架,减少与振动设备对其产生的影响,对粉料称和搅拌机配置合适的气体回流管,并保持其畅通。这样生产计量的原材料才能严格按配合比执行,才能得到有效控制。
1.4 混凝土运输过程产生的质量问题
(1)隐患分析
混凝土的运输,特别是对预拌混凝土的运输,因为混凝土从预拌完成后到浇筑现场有一定的距离,而这段运输时间往往是控制混凝土坍落度和易性的关键,同样其亦受一定的隐患因素制约,高温天气混凝土搅拌车尾部的混凝土水分蒸发较快。容易给人造成错觉,混凝土坍落度损失大;雨水天气,混凝土搅拌车尾部的混凝土水分较大,容易产生离析。此外,搅拌车车鼓转动的快慢,亦对混凝土有影响。车鼓转得快,混凝土在运输过程中被搅拌加剧,分子因摩擦产生的热运动亦加剧,水分子碰撞水泥颗粒机会增大,水化程度加大,混凝土坍落度损失增大,和易性变差快;车鼓转得慢,甚至停转,混凝土容易受行车的颠簸,而产生浆石分离,沉降等不良现象。
(2)预防措施
在混凝土运输过程中,车鼓保持6rad/min,并到工地后保持搅拌车高速转动4~5min,以使混凝土浇筑前充分再次混和均匀。如遇坍落度有所损失,可后掺一定的外加剂以达到理想效果。
1.5 混凝土养护不当产生的质量问题
混凝土交付浇筑后的养护问题,亦是影响混凝土浇筑物质量的因素之一。混凝土从生产、施工、养护、硬化是一系列的过程。
随着混凝土施工技术的发展,混凝土施工质量全过程控制的观点已被普遍接受,混凝土温度保护与养护作为混凝土浇筑过程很重要的程序和环节,也应有好的设计和施工,并且每一环节的质量控制都应落到实处。
混凝土养护措施主要有喷雾和流水养护。喷雾使表面上空形成一层雾状隔热层,使表面混凝土在浇筑过程中减少阳光直射强度,降低表面环境温度,对减少混凝土在浇筑振捣过程中温度回升有较好效果;表面流水养护可使混凝土早期最高温度降低1.5℃左右,但因浇筑表面一般平整度较差,表面难以做到全部有流水,同时对相邻施工段混凝土施工有较大干扰,故实施时有一定难度。
混凝土表面保护则以表面保温保湿为主。引起混凝土表面裂缝的原因是干缩和温度应力。干缩引起表面裂缝一般仅数厘米深度,主要靠养护解决。引起表面拉应力的温度因素有:气温变化、水化热和初始温差。气温变化主要有:气温骤降、气温年变化和日变化,特别是混凝土浇筑初期内部温度较高时尤应注意表面保护。在混凝土表面覆盖塑料薄膜或湿麻包袋等,紧贴混凝土表面起到隔温效果,是防止表面裂缝的最有效措施。
Copyright © 2019-2024 丹东东深混凝土有限责任公司 版权所有